
A Distributed Algorithm for Graph Edit Distance

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel and Patrick Martineau

Laboratoire d’Informatique (LI), Université François Rabelais
37200, Tours, France

Email: f_author,s_author@univ-tours.fr

Abstract—Graph edit distance is an error-tolerant matching
paradigm that can be used efficiently to address different tasks
in pattern recognition, machine learning, and data mining.
The literature is rich of many fast heuristics with unbounded
errors but few works are devoted to exact graph edit distance
computation. Exact graph edit distance methods suffer from high
time and memory consumption. In the meantime, heavy compu-
tation tasks have moved from desktop applications to servers in
order to spread the computation load on many machines. This
paradigm leads to re-design methods in terms of scalability and
performance. In this paper, a distributed and optimized branch-
and-bound algorithm for exact graph edit distance computation
is proposed. The search tree is cleverly pruned thanks to a
lower and upper bounds’ strategy. In addition, tree branches
are explored in a completely distributed manner to speed up the
tree traversal. Meaningful performance evaluation metrics are
presented. Experiments were conducted on two publicly available
datasets. Results demonstrate that under time constraints the
most precise solutions were obtained by our method against five
methods from the literature.

Keywords–Pattern Recognition; Graph Matching; Graph Edit
Distance; Branch-and-Bound; Distribution; Hadoop; MPI.

I. INTRODUCTION

Graph is an efficient data structure for object representation
in structural pattern recognition (PR). Graphs can be divided
into two main categories. First, graphs that are only based
on their topological structures. Second, graphs with attributes
on edges, vertices or both of them. Such attributes efficiently
describe objects in terms of shape, color, coordinate, size, etc.
and their relations [1]. The latter type of graphs is referred to
as attributed graphs.

Representing objects by graphs turns the problem of object
comparison into a graph matching (GM) one where evaluation
of topological and/or statistical similarity of two graphs has
to be found [2]. Researchers often shed light on error-tolerant
GM, where an error model can be easily integrated into the GM
process. The complexity of error-tolerant GM is NP-complete
[3]. Consequently, the Graduated Assignment algorithm [4]
has been employed to solve suboptimally error-tolerant GM.
However, its complexity is o(n6) where n is number of vertices
of both graphs. Several methods have a reduced complexity.
However, they are not flexible as they do not cope with all the
types of vertices and edges. For instance, the spectral methods
[5], [6] deal with unlabeled graphs or only allow severely
constrained label alphabets. Other methods are restricted to
specific types of graphs [7]–[9], to name just a few.

Among error-tolerant problems for matching arbitrarily
structured and arbitrarily attributed graphs, Graph Edit Dis-
tance (GED) is of great interest. GED is a discrete optimization

problem. The search space of possible matching is represented
as an ordered tree where a tree node is partial matching be-
tween two graphs. GED is NP-complete where its complexity
is exponential in the number of vertices of the involved graphs
[10]. GED can be applied to any type of graphs, including
hypergraphs [11]. Many fast heuristic methods with unbounded
errors have been proposed in the literature (e.g., [10]–[15]).
On the other hand, few exact approaches have been proposed
[16]–[18].

Recently, an exact Depth-First GED algorithm, referred to
as DF, has been proposed in [18]. DF outperforms a well-
known Best-First algorithm [16], referred to as A∗, in terms
of memory consumption and run time. DF works well on
relatively small graphs. To solve bigger matching problems,
in this paper, we propose to extend DF to a distributed
version which aims at spreading the workload over a clus-
ter of machines. The distribution scheme is based on tree-
decomposition and notification techniques. Instead of simply
proposing a distributed DF algorithm using Message Passing
Interface [19], we propose a master-slave distributed DF on top
of Hadoop [20] with one synchronized variable achieved via
ZooKeeper [21]. Roughly speaking, our algorithm consists of
three main steps: First, a decomposition step where the master
process divides the big matching problem into sub-problems.
Second, a distribution stage where the master dispatches the
sub problems among slave processes or so-called workers (i.e.,
processes to which a portion of work is associated). Third,
a search-tree exploration step where each worker starts to
explore its assigned problem by performing a partial DF. A
notification step occurs when a worker succeeds in finding
a better solution. In this case, the master informs the other
workers and all of them update their upper bound. When a
worker finishes the exploration of its assigned sub-problem,
it asks the master for another one. Finally, the execution of
the algorithm finishes when all the sub-problems generated in
the decomposition stage are explored. The proposed algorithm
is supported by novel evaluation performance metrics [22].
These metrics aim at comparing our algorithm with a set of
GED approaches based on several significant criteria.

The rest of the paper is organized as follows. In Section II,
the notations used in the paper are introduced. Moreover, the
state of the art of GED approaches and distributed branch-and-
bound techniques is presented. In Section III, the proposed dis-
tributed model is demonstrated. In Section IV, the datasets and
the experimental protocols used to point out the performance
of the proposed approaches are determined. Section V presents
the obtained results and raises a discussion afterwards. Finally,
conclusions are drawn and future perspectives are discussed in
Section VI.

II. RELATED WORKS

In this section, we first define our basic notations and
introduce GED and its computation.

A. Notations
1) Graph Based Notations: An attributed Graph (AG) is

represented by a four-tuple, AG = (V,E, µ, ζ), where V and
E are sets of vertices and edges such as E ⊆ V × V . Both
µ : V → LV and ζ : E → LE are vertex and edge labeling
functions which associate an attribute or a label to each vertex
vi and edge ei. LV and LE are unconstrained vertex and edge
attributes sets, respectively. LV and LE can be given by a set
of floats L = {1, 2, 3}, a vector space L = RN and/or a finite
set of symbolic attributes L = {x, y, b}.

GED is a graph matching method whose concept was first
reported in [3], [23]. Its basic idea is to find the best set of
transformations that can transform graph g1 into graph g2 by
means of edit operations on graph g2.

Let g1 = (V1, E1, µ1, ζ1) and g2 = (V2, E2, µ2, ζ2) be two
graphs, GED between g1 and g2 is defined by:

GED(g1, g2) = min
ed1,··· ,edk∈γ(g1,g2)

k∑
i=1

c(edi) (1)

where c denotes the cost function measuring the strength
c(edi) of an edit operation edi and γ(g1, g2) denotes the set
of edit paths transforming g1 into g2. The penalty, or cost, is
dependent on the strength of the difference between the actual
attributes information. Structure violations are also subject to
a cost which is usually dependent on the magnitude of the
structure violation [24]. And so, the penalty costs of each of
deletion, insertion and substitution affect the matching process.

A standard set of edit operations is given by insertions,
deletions and substitutions of both vertices and edges. We
denote the substitution of two vertices u and v by (u → v),
the deletion of vertex u by (u→ ε) and the insertion of vertex
v by (ε → v). For edges (e.g. e and z), we use the same
notations used for vertices. A complete edit path (EP) refers
to an edit path that fully transforms g1 into g2 (i.e., complete
solution). Mathematically, EP = {edi}ki=1.

2) Distribution Based Notations:

Definition II.1. Master-Slave Architecture
Master-Slave refers to an architecture in which one device (the
master) controls one or more other devices (the slaves).

Definition II.2. Job
A job is a distributed procedure which has one or more workers
(i.e., processes that are assigned to tasks). Each worker takes
a task or a bunch of tasks to be solved.

B. Graph Edit Distance Computation
The methods of the literature can be divided into two

categories depending on whether they can ensure the optimal
matching to be found or not.

1) Exact Graph Edit Distance Approaches: A widely used
method for edit distance computation is based on the A∗

algorithm [25]. This algorithm is considered as a foundation
work for solving GED. A∗ is a Best-First algorithm where the
enumeration of all possible solutions is achieved by means of
an ordered tree that is constructed dynamically at run time by

iteratively creating successor nodes. At each time, the node or
so called partial edit path p that has the least g(p) + h(p)
is chosen. g(p) represents the cost of the partial edit path
accumulated so far while h(p) denotes the estimated cost from
p to a leaf node representing a complete edit path. The sum
g(p) + h(p) is referred to as a lower bound lb(p). Given that
the estimation of the future costs h(p) is lower than, or equal
to, the real costs, an optimal path from the root node to a leaf
node is guaranteed to be found [26]. Leaf nodes correspond to
feasible solutions and so complete edit paths. In the worst case,
the space complexity can be expressed as O(|γ|) [27] where
|γ| is the cardinality of the set of all possible edit paths. Since
|γ| is exponentional in the number of vertices involved in the
graphs, the memory usage is still an issue.

To overcome the memory consumption problem of A∗, a
recent Depth-First GED algorithm, referred to as DF, has been
proposed in [18]. This algorithm speeds up the computations
of GED thanks to its upper and lower bounds pruning strategy
and its some associated preprocessing steps. Moreover, DF
does not exhaust memory as the number of pending edit paths
that are stored in the set, called OPEN, is relatively small
thanks to the Depth-First search where the number of pending
nodes is |V1|.|V2| in the worst case.

2) Approximate Graph Edit Distance Approaches: Variants
of approximate GED algorithms are proposed to make GED
computation substantially faster. A modification of A∗, called
Beam-Search (BS), has been proposed in [28]. Instead of
exploring all edit paths in the search tree, only x most
promising partial edit paths are kept in the set of promising
candidates.

In [26], the problem of graph matching is reduced to
finding an optimal matching in a complete bipartite GM,
this algorithm is referred to as BP. In the worst case, the
maximum number of operations needed by BP is O(n3).
Since BP considers local structures rather than global ones, an
overestimation of the exact GED cannot be neglected. A recent
algorithm [29], named FBP, reduced the size of BP’s matrices.
Recently, researchers have observed that BP’s overestimation
is very often due to a few incorrectly assigned vertices. That is,
only few vertex substitutions from the next step are responsible
for additional (unnecessary) edge operations in the step after
and thus resulting in the overestimation of the exact edit
distance. Thus, recent works have been proposed to swap the
misleading mappings [30], [31]. These improvements increase
run times. However, they improve the accuracy of BP.

C. Distributed Branch-and-Bound Algorithms
Our interest in this paper is to propose a distributed

extension of DF to be able to match large graphs. The
best computing design that suits DF is SPMD [32] where
a portion of the data (i.e., sub-search tree) is given to each
process and all processes execute the proposed method on their
associated sub-search trees. Since DF is a Branch-and-Bound
(BnB) algorithm, we survey the state of art of distributed BnB
approaches. However, before surveying the literature, some
challenging questions should be listed:

• What is(are) the sub-task(s) associated to each pro-
cess?

• What is the estimated time/needed memory per sub-
task?

• What is the number of needed processes?

• How many sub-tasks one may generate before the
distribution starts?

• How to efficiently distribute the search tree nodes of
the irregular search tree among a large set of pro-
cesses? Note that the decomposition, or distribution,
can be irregular due to the bounding, or pruning with
the help of g(p)+h(p). Such a thing cannot be known
except at run time.

These raised questions will be answered after exploring the
state-of-art’s methods dedicated to distributed BnB.

In [33], a one-iteration MPI approach was proposed. This
approach is dedicated to solving three-phase electrical distribu-
tion networks. In the beginning, a specific number of nodes are
generated by the master process. When this number is reached,
no more nodes could be generated. The master then gives,
or sends, a node to each slave. Then, each slave starts the
exploration of the search tree in a Depth-First way. Once a
slave finds a better upper bound, it sends to the master that
updates all slaves. Once a slave finishes its the exploration of
its assigned node, it sends a message to the master asking for a
new node and the process continues. The drawback of such an
approach is that once all the nodes, generated by the master,
are given to all processes, some processes might become idle
because they finished their associated nodes. Such a fact does
not allow this approach to use all its resources at each time. In
[34], a MPI BnB approach was proposed to solve the knapsack
problem. This work is similar to [33]. However, the way of
exploring the tree is left to the user so one can choose either
Depth-First, a Best-First or a Breadth-First.

To the best of our knowledge, in the literature there is
no distributed BnB method dedicated to solving GED. Both
[33] and [34] are based on MPI which has no fault-tolerance.
That is, if one slave process fails, one needs to re-execute all
the processes. In this paper, instead of proposing an approach
bases on MPI, we build MPI upon Hadoop [20]. Hadoop is
tolerant to faults, thus, if one process fails, a master program
selects another a free process to do its task. Roughly speaking,
only the upper bound UB has to be shared with all processes.
However, Hadoop is a model with restricted communication
patterns. In order to allow processes to send messages and
notify the other processes when finding a better UB, a message
passing tool is adopted [21].

The search tree of GED contains nodes that represent
partial edit paths. When thinking of a distributed approach
of DF, these edit paths can be given to processes as tasks to
be solved. Such a step divides the GED problem into smaller
problems. The GED problem is irregular in the sense of having
an irregular search tree where the number of nodes differs,
depending on the ability of lb(p) to prune the search tree.
Based on that, it becomes hard to estimate the time needed by
processes to explore a branch.

In [33] and [34], the authors did not mention the method
they followed in order to generate nodes before the distribution
starts. In our GED problem, one may think of A∗ since it starts
exploring nodes that lead to the optimal solution, if lb(p) is
carefully chosen. But, there are two key issues: First, how
many nodes shall be generated by A∗ before a DF procedure
starts? Second, how to divide the nodes between processes?.

Input: Non-empty attributed graphs g1 = (V1, E1, µ1, v1) and
g2 = (V2, E2, µ2, v2) where V1 = {u1, ..., u|v1|} and V2 =
{v1, ..., v|v2|}. A parameter N which is the number of the first
generated partial edit paths.
Output: A minimum distance UBCOSTshared and a minimum
cost edit path (UB) from g1 to g2 e.g., UB= {u1 → v3, u2 → ε
, ε→ v2}

1: (UB , UBCOST) ← BP(g1, g2)
2: OPEN ← {φ}
3: Q ← A∗(N)
4: Q ← SortAscending(Q)
5: for q ∈ Q do
6: OPEN.AddFirst(q);
7: end for
8: UBCOSTshared ← UBCOST {put UBCOST in an acces-

sible place to all workers}
9: UBshared ← UB {put UB in an accessible place to all

workers}
10: FileOPENshared ← OPEN
11: parallel for w ∈W do
12: Get-Next-Task: p← FileOPENshared.popFirst()
13: Call PartialDF(p,W ,UBCOSTshared,

UBshared)
14: if FileOPENshared is not empty then
15: Repeat Get-Next-Task
16: end if
17: end parallel for
18: Return (UBshared, UBCOSTshared).

Figure 1. Distributed DF (D-DF).

III. DISTRIBUTED DEPTH-FIRST GED APPROACH

Our distributed approach, referred to as D-DF, consists
of a single job. Figure 1 represents the three main steps of
D-DF. First, the master matches g1 and g2 using BP and
outputs both the matching sequence UB and its edit distance
UBCOST (line 1). Second, A∗ is executed and stopped once
N partial edit paths are generated (line 3). Afterwards, these
partial edit paths (Q) are sorted in ascending order and inserted
to OPEN (lines 4 to 7). The master also saves UB and its
UBCOST in a place/space accessible by all workers W (lines
8 and 9). Finally, the master distributes the work (i.e., Q)
among workers, each worker takes one edit path from the
master at a time (line 12). This step adapts the dynamic
scheduling where tasks are associated to processes at run
time. Thus, each process takes one and only one edit path
at a time t instead of having a predefined list of edit paths.
Workers start the exploration of their associated partial edit
paths (line 13). If a worker finishes its assigned partial edit
path, it sends a message to the master asking for a new edit
path (lines 14 to 16). When finishing all the partial edit paths,
saved in FileOPENshared, the program outputs UBshared and
UBCOSTshared as an optimal solution of matching g1 and g2
(line 18).

Figure 2 demonstrates the function PartialDF that each
worker w executes on its assigned partial edit path p. Note
that each p is given to an available worker by the master.
The procedures of this algorithm are similar to DF, the only
difference is that UBCOST and UB are saved in a shared space
that is accessible by all workers W . These shared variables are

Input: An edit path p, the set of workers W , UBCOSTshared
and UBshared

1: OPEN ← {φ}, pmin ← φ
2: OPEN .addFirst(p)
3: r ← parent(u1), rtmp ← r
4: UBCOST ← read(UBCOSTshared)
5: Set watch on UBCOSTshared
6: while OPEN != {φ} do
7: p ← OPEN .popFirst() . Take first element and

remove it from OPEN
8: Listp ← GenerateChildren(p)
9: if Listp = {φ} then

10: for vi ∈ pendingV2(p) do
11: q ← insertion(ε , vi) . i.e., {ε→ vi}
12: p.AddFirst(q)
13: end for
14: if g(p) < UB then
15: UB ← g(p), Bestedit path ← p
16: UBCOSTshared ← g(p) + h(p)
17: UBshared ← p
18: MASTER: notify-all-workers w ∈W
19: for w ∈W do
20: UBCOST ← read(UBCOSTshared)
21: Reset watch on UBCOSTshared
22: end for
23: end if
24: else
25: Listp ← SortAscending(Listp) . according to

g(p)+h(p)
26: for q ∈ Listp do
27: if g(q) + h(q) < UB then
28: OPEN .AddFirst(q)
29: end if
30: end for
31: end if
32: end while

Figure 2. Function PartialDF.

referred to as UBCOSTshared and UBshared. All the workers
read the value stored in UBCOSTshared through read message
(line 4). They also put a watch on UBCOSTshared via Set-
Watch message so as to be awaken when any change happens
to its value (line 5). All the workers solve their associated
partial edit path. Whenever worker w succeeds in finding a
better value of its UBCOST, it updates both UBCOSTshared
and UBshared through update messages (lines 15 and 17), the
master then sends a notification via notify-Worker message to
all the other workers (line 18). Workers read the new value,
update their local UB and continue solving their problems.
Moreover, workers re-establish, or reset, the watch for data
changes through Reset-Watch message (lines 19 to 22). The
update of UBCOSTshared is done carefully as only one worker
can change UBCOSTshared at any time t. That is, if two
workers want to change UBCOSTshared at the same time,
one of them is delayed by the master for some milliseconds
before entering the critical point. The final answers (i.e., the
optimal matching and its distance) are found in UBshared
and UBCOSTshared respectively when all workers finish their
associated tasks.

A. Advantages and Drawbacks
D-DF is a fully distributed approach where each worker

accomplishes its task without waiting for each other. Moreover,
the search tree is cleverly pruned. As soon as any worker finds
a better UBCOSTshared, it sends the new value to the master.
Then, the notification to all the other workers is achieved by
the master. Finally, all the workers receive the new value. Such
operations help at pruning the workers’ search trees as fast as
possible. D-DF is a single-job approach and thus the drawback
behind such an approach is that some workers might become
idle because there is no more edit path in FileOPENshared
while the other ones are still working as they have not finished
their assigned edit paths. To overcome such a problem, in
future work, this algorithm can be transformed into a multi-
jobs, or multi-iteration, algorithm.

IV. EXPERIMENTS

A. Environment
D-DF is built on top of Hadoop [20] with a notification

tool called ZooKeeper [21] used to share UBCOSTshared and
UBshared with all workers. Synchronizing these variables does
not break the scalability. On the contrary, it helps in pruning
the search tree as fast as possible. The evaluation of D-
DF is conducted on 5 machines running Hadoop MapReduce
version 1.0.4. Each node contains a 4-core Intel i7 processor
3.07GHz, 8GB memory and one hard drive with 380GB
capacity. Hadoop was allocated 20 workers (4 workers per
machine), each with a maximum JVM memory size of 1GB.
Hadoop Distributed File System is used for dispatching edit
paths with a replication factor that is equal to 3. For sequential
algorithms, evaluations are conducted on one machine.

B. Studied Methods
We compare D-DF with five GED algorithms from the

literature. From the related work, we chose two exact methods
and three approximate ones. On the exact methods’ side, we
have chosen, A∗ and DF. In both algorithms h(p) is calculated
by applying BP on vertices and edges in a separated manner
[18]. On the approximate methods’ side, we include BS-1, BS-
10, BS-100, BP and FBP, see Section II-B.

C. Datasets
Recently, a new repository has been put forward to test the

scalability of graphs [22]. Databases are divided into subsets
each of which represents graphs with the same number of
vertices. In this work, we use two PR datasets (GREC and
Mutagenicity (MUTA)) taken from the repository. However,
we eliminate the easy graph matching problems from both
datasets since we are interested in difficult problems for
distribution issues. To filter these databases, we run DF on
each pair of graphs and stop it after 5 minutes. If there is no
optimal solution found within 5 minutes, then the matching
problem is considered as difficult. This results in 627 problems
on MUTA and 92 problems on GREC. For more details about
these datasets, please visit the GDR4GED repository [35].

D. Protocol
First, the effect the variable N (number of initial edit paths)

is tested on several values. Five values of N are chosen: 20,
100, 250, 500 and 1000, where N=20 represents the least
distributed case (i.e., one edit path per worker), N= 100 and

250 moderately amortize the communication between master
and slaves whereas N=500 and 1000 is the more complete
case where workers have to cross the network many times in
order to ask for a new edit path once they finish solving an
already assigned one. We also study the effect of increasing
the number of machines, from 2 to 5 machines, on run time.
Both tests are evaluated on GREC-20 (i.e., graphs of GREC
whose number of vertices is twenty) [22].

The deviation was chosen as a metric to compare all the
included methods [22]. We compute the error committed by
each method m over the reference distances. For each pair
of graphs matched by method m, we provide the following
deviation measure:

dev(gi, gj)m =
|d(gi, gj)m −Rgi,gj |

Rgi,gj
, ∀(i, j) ∈ J1, GK2,

∀m ∈M
(2)

where G is the number of graphs. d(gi, gj)m is the distance
obtained when matching gi and gj using method m while
Rgi,gj corresponds to the best known solution among all
the included methods. We also measure the overall time
in milliseconds (ms), for each GED computation, including
all the inherits costs computations. The mean run time is
calculated per subset s and for each method m. Due to the
high complexity of GED methods, we propose to evaluate them
under a time constraint CT that is equal to 300 seconds and
a memory constraint CM that is equal to 1GB. Note that the
only algorithm that violates memory is A∗.

V. RESULTS AND DISCUSSIONS

Figure 3 depicts the parameters study. One can see that
increasing the number of machines decreases the run time.
For some instances, the runtime was not reduced due to the
difficulty of matching problems. As for N , the best case was
when it equals 250, owing to moderately performing tasks-
dispatch. These values were used for the rest of experiments.

GREC−20

GREC−20: Number of Machines

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

D−DF−2machines
D−DF−3machines
D−DF−4machines
D−DF−5machines

GREC−20

Number of Vertices

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

20 editpaths
100 editpaths
250 editpaths
500 editpaths
1000 editpaths

Figure 3. Parameters: Left (Number of Machines), Right (Variable N). The
objective of this study is to choose the values that minimize D-DF’s run

time.

Figure 4 illustrates the deviation of the included methods
on GREC and MUTA. Figure 4(a) shows that D-DF has
the least deviation (0%) on all subsets, followed by DF.
However, that was not the case on MUTA, see Figure 4(b).
BS100 outperformed D-DF in terms of number of best found
solutions. The major differences between these algorithms are
a) The search space exploration manner and b) the Vertices-
Sorting strategy which is adapted in DF [18] and not in

BS. In fact, BP is integrated in the preprocessing step of
DF to sort vertices of g1. Since BP did not give a good
estimation on MUTA, it was also irrelevant when sorting the
vertices of g1 resulting in the exploration of misleading nodes
in the search tree. Since the graphs of MUTA are relatively
large, backtracking nodes took time. MUTA contains symbolic
attributes while DF and D-DF are designed for rich attributed
graphs where the use of BP in the vertices sort is meaningful.
However, the deviation of BS and D-DF was relatively similar.
Both D-DF and DF succeeded in finding upper bounds that are
better than BP. D-DF, however, has always outperformed DF
in terms of deviation. This can be remarkably seen on MUTA
where, on average, the deviation of DF was 18% while the
deviation of D-DF was 6.5%.

15 20 MIX

Number of Vertices
M

ea
n

de
vi

at
io

n
in

 (
%

)

0
20

40
60

80
10

0
12

0 FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

20 30 40 50 60 70 MIX

Number of Vertices

M
ea

n
de

vi
at

io
n

in
 (

%
)

0
50

10
0

15
0

FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

Figure 4. Deviation: Left (GREC), Right (MUTA). Note that the lower the
deviation the better the algorithm.

15 20 MIX

Number of Vertices

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

20 30 40 50 60 70 MIX

Number of Vertices

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

Figure 5. Run time: Left (GREC), Right (MUTA). Note that the lower the
run time the better the algorithm.

D-DF was always faster or equal to DF, see Figure 5. At
a first glance, one can think that A∗ was faster than both DF
and D-DF. However, that was not the case. In fact, A∗ was
unable to output feasible solutions and was stopped because
of its memory bottleneck. BP was the fastest algorithm (12.3
milliseconds on GREC and 11 milliseconds on MUTA).

VI. CONCLUSION AND PERSPECTIVES

In the present paper, we have considered the problem of
GED computation for PR. GED is a powerful and flexible
paradigm that has been used in different applications in PR. In
the literature, few exact GED algorithms have been proposed.
Recently, a Depth-First GED algorithm (DF) has shown to be
effective. DF, thanks to its Depth-First exploration, upper and
lower bounds pruning strategies, overcomes the high memory
consumption from which a well-known A∗ algorithm suffers.
However, DF can match relatively small graphs. In this paper,
we have proposed to extend it to a distributed version called
D-DF. We build a master-slave architecture over Hadoop in
order to take advantage of the fault-tolerance of Hadoop. Each

worker gets one partial edit path and all workers solve their
assigned edit paths in a fully distributed manner. In addition,
a notification process is integrated. When any worker finds
a better upper bound, it notifies the master to share the new
upper bound with all workers.

In the experiments part, we have proposed to evaluate both
exact and approximate GED approaches, using novel perfor-
mance evaluation metrics under time and memory constraints,
on two different datasets (GREC and MUTA). Experiments
have pointed out that D-DF has the minimum deviation. BS is
slightly superior to D-DF in terms of deviation on the MUTA
dataset. In fact, one weakness of DF and so D-DF is that
their sorting strategy is BP-dependent. One solution could be
to better learn the upper bound and so the sorting strategy in
function of dataset type/nature. Experiments have also demon-
strated that D-DF always outperforms DF in terms of deviation
and run time. Indeed, D-DF is flexible as one can add more
machines and thus decrease the running time. Results have also
indicated that there is always a trade-off between deviation and
running time. In other words, approximate methods are fast,
however, they are not as accurate as exact ones. On the other
hand, DF and D-DF take longer time but lead to better results.

The main drawback behind D-DF is that it is a single-job
algorithm. When there is no time constraint, some workers
work while others may become idle after finishing the explo-
ration of their assigned partial edit paths. To overcome this
drawback and as future work, we aim at transforming D-DF
into a multi-iteration method where all workers work without
becoming idle. Moreover, two ideas can be applied for both
DF and D-DF. First, coming up with a better lower bound
and thus making the calculations faster. Second, learning to
sort the vertices of each dataset in a way that minimizes its
deviation. Such an extension of DF and D-DF can beat the
approximate approaches when matching graphs of MUTA.

REFERENCES

[1] K. Riesen and H. Bunke, “Iam graph database repository for graph
based pattern recognition and machine learning,” 2008, pp. 287–297.

[2] M. Vento, “A long trip in the charming world of graphs for pattern
recognition,” Pattern Recognition, vol. 48, no. 2, 2015, pp. 291–301.

[3] H. Bunke, “Inexact graph matching for structural pattern recognition,”
Pattern Recognition Letters, vol. 1, no. 4, 1983, pp. 245–253.

[4] S. Gold and A. Rangarajan, “A graduated assignment algorithm for
graph matching,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 18, 1996, pp. 377–388.

[5] S. Umeyama, “An eigendecomposition approach to weighted graph
matching problems,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 10, 1988, pp. 695–703.

[6] R. Wilson, E. Hancock, and B. Luo, “Pattern vectors from algebraic
graph theory,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 27, 2005, pp. 1112–1124.

[7] X. Jiang and H. Bunke, “Optimal quadratic-time isomorphism of
ordered graphs,” Pattern Recognition, vol. 32, no. 7, 1999, pp. 1273
– 1283.

[8] J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism
of planar graphs (preliminary report),” in Proceedings of the Sixth
Annual ACM Symposium on Theory of Computing. New York, NY,
USA: ACM, 1974, pp. 172–184.

[9] M. Neuhaus and H. Bunke, “An error-tolerant approximate matching
algorithm for attributed planar graphs and its application to fingerprint
classification,” in SSPR WORKSHOP. LNCS 3138. Springer, 2004,
pp. 180–189.

[10] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” vol. 2, 2009, pp. 25–36.

[11] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed
relational graphs for pattern analysis,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 9, no. 12, 1979, pp. 757–768.

[12] J. K. W. Christmas and M. Petrou., “Structural matching in computer
vision using probabilistic relaxation.” IEEE Trans. PAMI,, vol. 2, 1995,
pp. 749–764.

[13] A. D. J. Cross and E. R. Hancock, “Graph matching with a dual-step
em algorithm,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, 1998,
pp. 1236–1253.

[14] e. a. Finch, Wilson, “An energy function and continuous edit process
for graph matching,” Neural Computat, vol. 10, 1998, pp. 1873–1894.

[15] P. Kuner and B. Ueberreiter, “Pattern recognition by graph matching:
Combinatorial versus continuous optimization,” International journal in
Pattern Recognition and Artificial Intelligence, vol. 2, 1988, pp. 527—
-542.

[16] P. Hart, N. Nilsson, and B. Raphael., “A formal basis for the heuristic
determination of minimum cost paths.” IEEE Transactions of Systems,
Science, and Cybernetics., vol. 28, 2004, pp. 100–107.

[17] D. Justice and A. Hero, “A binary linear programming formulation of
the graph edit distance,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, 2006, pp. 1200–1214.

[18] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An exact
graph edit distance algorithm for solving pattern recognition problems,”
Proceedings of ICPRAM, 2015, pp. 271–278.

[19] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI-The Complete Reference, volume 1: The MPI Core, 2nd ed.
Cambridge, MA, USA: MIT Press, 1998.

[20] T. White and D. Cutting, Hadoop : the definitive guide. O’Reilly,
2009.

[21] F. Junqueira and B. Reed, Zookeeper: Distributed Process Coordination,
2013.

[22] Z. Abu-Aisheh, R. Raveaux, and J.-Y. Ramel, “A graph database
repository and performance evaluation metrics for graph edit distance,”
in Graph-Based Representations in Pattern Recognition - GbRPR 2015.,
2015, pp. 138–147.

[23] A. Sanfeliu and K. Fu, “A distance measure between attributed relational
graphs for pattern recognition,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 13, 1983, pp. 353–362.

[24] K. Riesen and H. Bunke, Graph Classification and Clustering Based
on Vector Space Embedding. River Edge, NJ, USA: World Scientific
Publishing Co., Inc., 2010.

[25] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up graph edit
distance computation with a bipartite heuristic,” no. 6658, 2011, pp.
102–111.

[26] B. H. Riesen, K., “Approximate graph edit distance computation by
means of bipartite graph matching.” Image and Vision Computing.,
vol. 28, 2009, pp. 950–959.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[28] H. B. M. Neuhaus, K. Riesen, “Fast suboptimal algorithms for the
computation of graph edit distance,” Proceedings of SSPR., 2006, pp.
163–172.

[29] F. Serratosa, “Computation of graph edit distance: Reasoning about
optimality and speed-up,” Image and Vision Computing, vol. 40, 2015,
pp. 38–48.

[30] K. Riesen and H. Bunke, “Improving Approximate Graph Edit Distance
by Means of a Greedy Swap Strategy,” vol. 8509, 2014, pp. 314–321.

[31] K. Riesen, A. Fischer, and H. Bunke, “Improving approximate graph
edit distance using genetic algorithms,” 2014, pp. 63–72.

[32] M. J. Atallah and S. Fox, Eds., Algorithms and Theory of Computation
Handbook, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1998.

[33] L. Barreto and M. Bauer, “Parallel branch and bound algorithm - a
comparison between serial, openmp and mpi implementations,” journal
of Physics: Conference Series, vol. 256, no. 5, 2010, pp. 012–018.

[34] I. Dorta, C. León, and C. Rodrı́guez, “A comparison between mpi and
openmp branch-and-bound skeletons.” in IPDPS, 2003.

[35] “Gdr4ged,” http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.html.,
2015.

